Minuto a Minuto

Sin Categoría PREP 2024 – TEST
Your browser doesn’t support iframes Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent et enim accumsan, molestie tortor ut, finibus leo. Nunc id diam ut eros viverra porta eget ut lacus. Integer maximus quam erat, at pharetra mi feugiat ac. Vivamus a felis sit amet quam iaculis viverra. Curabitur euismod velit sed sem pharetra … Continued
Deportes Vontae Davis, exjugador de la NFL, murió a los 35 años
El cuerpo de Vontae Davis, exjugador de la NFL, fue encontrado en Southwest Ranches, Florida, detallaron auroridades
Nacional Sheinbaum propone una “simplificación administrativa” para desaparecer al Inai
Sheinbaum dijo que "mayor regulación ha generado ineficiencia", por lo que de llegar a la Presidencia desaparecería instituciones y reglamentos
Nacional Conafor reporta 69 incendios forestales activos en México
Por medio de una tarjeta informativa, la Conafor informó que estos incendios forestales se encuentran en 18 entidades
Nacional Aeropuerto de Mexicali reanuda operaciones, tras el mal clima del fin de semana
El Aeropuerto Internacional de Mexicali, en Baja California, tuvo que ser cerrado el pasado sábado por la tarde debido al mal clima

El pasado fin de semana falleció, a la edad de 86 años, John Nash, reconocido matemático y premio Nobel de Economía en 1994. Aunque fuera de los círculos académicos, Nash no fue muy conocido hasta el 2001 en que se estrenó el filmé biográfico A Beautiful Mind —en el que Nash fue interpretado por el actor australiano Russell Crowe—; sus contribuciones dentro del mundo académico y en especial a las ciencias económicas son realmente trascendentales.

Nash destacó por sus contribuciones al desarrollo del marco analítico y el estudio de la teoría de juegos que es, tal vez, una de las herramientas teóricas más aplicables en el análisis del proceso de toma de decisiones en la vida real.

La teoría de juegos es importante porque los seres humanos estamos constantemente enfrentando situaciones donde hay que tomar decisiones.

Dichas decisiones requieren una evaluación de los riesgos y beneficios para tomar la más óptima dadas las circunstancias. La idea subyacente básica de la teoría de juegos es que las decisiones de cada participante en el juego dependen no solamente de sus propias estrategias sino también de las estrategias de los demás participantes. Ejemplos sencillos de este principio básico se pueden encontrar en el ajedrez, el póquer, etcétera.

En su esencia, la teoría de juegos estudia las posibles combinaciones y resultados que se pueden dar en una situación o juego en particular con base en el comportamiento racional de los participantes bajo cualquier situación concebible.

La teoría de juegos ha sido ampliamente usada para estudiar problemas económicos como los duopolios y oligopolios y para analizar estrategias bélicas.

Aunque la teoría de juegos tuvo sus orígenes en 1944 con el trabajo de John von Neumann y Oskar Morgenstern, John Nash contribuyó de manera seminal a su estudio, con el desarrollo modelos matemáticos que permitieron aplicar la teoría de juegos a problemas con más de una solución, conocidos como juegos con equilibrios múltiples.

El ejemplo más famoso de este tipo de equilibrios es el del dilema del prisionero. En esta situación, dos cómplices en un crimen han sido arrestados y la policía les ofrece, por separado a cada uno, una sentencia reducida a cambio de una confesión incriminando al cómplice. Cada prisionero tiene la opción de confesar o no. Si confiesa, el resultado puede ser una sentencia reducida, suponiendo que el cómplice no confiesa, o una sentencia mediana si ambos confiesan.

Si no confiesa, podría quedar en libertad, suponiendo que el cómplice tampoco confiesa, pero también corre el riesgo de una sentencia larga si no confiesa y su cómplice sí.

A primera instancia, parecería que la mejor decisión para el prisionero es no confesar; el hecho de que el cómplice tenga el incentivo de confesar hace que la mejor decisión sea confesar para evitar el escenario de la sentencia más larga.

Aunque la solución del juego arroja un equilibrio subóptimo, el riesgo implícito por la incertidumbre de no saber que hará el otro prisionero lleva a esta solución de equilibrio conocida como el equilibrio de Nash.

La teoría de juegos tiene limitaciones prácticas importantes en algunos casos, como el supuesto de que todos los agentes se comportan de manera racional y que además tienen conocimiento de todas las opciones a su alcance y al alcance de su contrincante.

No obstante, su desarrollo y aplicación han contribuido de manera tangible a mejorar el diseño de las reglas básicas de negociación y la necesidad de cooperación para la resolución de ciertos conflictos.